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ABSTRACT

Chiplets are transforming computer system designs, allow-
ing system designers to combine heterogeneous computing
resources at unprecedented scales. Breaking larger, mono-
lithic chips into smaller, connected chiplets helps performance
continue scaling, avoids die size limitations, improves yield,
and reduces design and integration costs. However, chiplet-
based designs introduce an additional level of hierarchy, which
causes indirection and non-uniformity. This clashes with typ-
ical heterogeneous systems: unlike CPU-based multi-chiplet
systems, heterogeneous systems do not have significant OS
support or complex coherence protocols to mitigate the impact
of this indirection. Thus, exploiting locality across application
phases is harder in multi-chiplet heterogeneous systems. We
propose CPElide, which utilizes information already avail-
able in heterogeneous systems’ embedded microprocessor (the
command processor) to track inter-chiplet data dependencies
and aggressively perform implicit synchronization only when
necessary, instead of conservatively like the state-of-the-art
HMG. Across 24 workloads CPElide improves average perfor-
mance (13%, 19%), energy (14%, 11%), and network traffic
(14%, 17%), respectively, over current approaches and HMG.

Index Terms—GPGPU, Chiplets, Synchronization, Coherence.

I. INTRODUCTION

Systems ranging from smartphones to supercomputers are
embracing heterogeneity to improve efficiency. The underlying
technology is also changing. For decades vendors used tran-
sistor scaling to fit an order of magnitude more transistors
on a die per technology generation. For example, modern
GPUs often have hundreds of compute units (CUs), 4x more
CUs than the previous decade [64], and run applications with
millions or billions of threads. However, continuing to scale
performance and energy efficiency for future heterogeneous
systems is hampered by technology scaling and Moore’s Law
slowing [63]. General-purpose CPUs and accelerators also
often have different timing, density, and bandwidth require-
ments. Thus, integrating them on a single die is difficult.
Moreover, cost, die, and yield limitations make designing
larger, monolithic systems difficult [16], [60], [64], [106].
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Fig. 1: Overall heterogeneous system.
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Recent research has combined multiple smaller chips into
a large, aggregated system, an approach known as multi-
chip modules (MCMs) or chiplets [16], [17], [40], [64], [89],
[118], [129], as shown in Figure 1. Industry has shown
chiplet-based CPUs can continue scaling performance [93].
Since the chiplets are smaller, they avoid the die and yield
challenges monolithic systems face. Moreover, integrating
multiple chiplets together (e.g., using interposers [56], [59],
[60], [83] or other packaging technologies [117]) improves
memory bandwidth, memory capacity, and I/O scalability [53],
[54], [64], [103], [122], [129]. This enables closer integration
of components than was previously possible, without the
technology integration challenges monolithic designs faced.

However, applying this approach to heterogeneous systems
introduces new challenges. In particular, two key bottlenecks
are bandwidth limited inter-chiplet links [116] and more
expensive inter-kernel reuse caused by additional cache lev-
els being subject to implicit synchronization [64], [142]. To
examine these issues we focus on chiplet-based GPUs [54],
[108], [117], [129] because GPUs have become the general-
purpose accelerator of choice due to their wide availability
and ease of programming. However, the issues also apply to
other accelerators [7], [14], [29], [50], [58], [111] (discussed
further in Section VI).

As shown in Figure 1b, multi-chiplet GPUs have an addi-
tional level of cache. Thus, GPU L2 caches are now shared
across CUs within a chiplet, and the L3 cache is a shared LLC
across all chiplets. As a result, synchronization operations are
even more expensive in multi-chiplet GPUs than monolithic
GPUs (discussed further in Section II-C). Although most GPU
applications only have implicit, coarse-grained synchroniza-



tion at kernel boundaries, they still must invalidate all valid
data from local caches at kernel launches (an implicit acquire)
and write through all dirty data from local caches (an implicit
release) at kernel completion to ensure correctness [41], [48],
[86]. In monolithic GPUs, this overhead was relatively small
because the L2 cache was shared across all CUs, and GPU
L1 caches typically use write-through or write-no-allocate
policies. However, in chiplet-based GPUs the L3 is the shared
ordering point across chiplets. Thus, the per-chiplet L2 caches
must also be invalidated and flushed at kernel boundaries.

This increased indirection hurts performance: unlike mono-
lithic GPUs, chiplet-based GPUs cannot exploit inter-kernel
locality at the L2. To understand inter-kernel shared L2 reuse’s
impact, we compared performance of our workloads (Sec-
tion IV-D) on a 4-chiplet GPU to an equivalent (but infeasible
to build) monolithic GPU. Figure 2 shows the loss of inter-
kernel shared L2 reuse is significant: 54% on average (similar
to prior work that shows 29%-45% average performance
loss [116], [142]). Consequently, efficiently moving data is
challenging in chiplet-based heterogeneous systems and will
become even more acute as systems scale to more chiplets.

To address this inefficiency we propose CPElide. CPElide
leverages the key insight that, although current systems do
not exploit it (Section II-B), the GPU’s Command Processor
(CP) has a global view of what work groups (WGs) are
being sent to each chiplet and what data structures each
WG accesses at a given time. Modern, monolithic GPUs
often utilize a centralized, integrated programmable processor
(the CP) to interface between the programmable accelerator
and software (Figure la). However, currently these CPs are
limited to parsing work contexts and latency-blind scheduling
(discussed further in Section II). We propose to redesign
the CP to utilize this information, in concert with software
information (from the compiler or programmer) to determine
when implicit synchronization must be performed. Given
this, CPElide generates the appropriate per-chiplet L2 acquire
and release operations at kernel launches to ensure data is
invalidated and/or flushed right before another chiplet needs it.
Effectively, CPElide converts conservative, per-kernel, GPU-
wide implicit acquires and releases into aggressive, chiplet-
specific, on demand acquires and releases — increasing reuse
and reducing the implicit synchronization penalty.

However, modern CPs view the accelerators monolithically,
even though accelerators are often distributed across multiple
chiplets. Thus, we propose to partition the global, centralized
CP’s responsibilities between a global CP and local, per-
chiplet CPs (Figure 1b). Modern chiplet-based GPUs have
a local, per-chiplet CP and elect one of these local CPs to
manage work across the GPU [88], but they do not utilize all
of their available information to intelligently partition work
— which we propose to do. The local CPs have access to
dynamic, micro-second scale information about their chiplet,
which they communicate to the global CP. Likewise, the global
CP has a global view of all CUs, including synthesizing the
information from the local CPs, and all work being sent to
the GPU. Additionally, since the global CP has access to the
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Fig. 2: Average performance lose due to lack of L2 cache
inter-kernel reuse in multi-chiplet GPUs versus equivalent
monolithic GPU, from both prior work [116], [142] and ours.

GPU’s kernel objects’ metadata [50], it knows which data
structure(s) each kernel accesses, as well as what chiplet(s)
each kernel will be assigned to. The global CP also knows
what data structure(s) subsequent kernel(s) will access and
which chiplet(s) those kernel(s) will be scheduled on. Thus,
the global CP has a complete picture of what data may still
be in the chiplet’s L1 and L2 caches. CPElide uses the global
CP’s information to track, at a data structure granularity, when
and where data structures are being accessed and issue the
appropriate per-chiplet synchronization operations.

Prior work examined chiplet-based GPU and multi-GPU
(MGPU) coherence. Hierarchical Multi-GPU (HMG) [116]
extend existing GPU coherence protocols from monolithic
GPUs (Section II-C) for MGPU systems by hierarchically
tracking sharers. Similarly, Halcone [91] hierarchically extends
timestamp-based monolithic GPU coherence protocols for
MGPU systems. However, we show HMG’s complexity is
unnecessary and sometimes hurts performance (Section V).
CPElide also shares some similarities with CPU distributed
shared memory approaches, although they either incur signif-
icant latency overheads or require additional copies compared
to CPElide. We discuss related work further in Section VII.

Overall, across 24 benchmarks from traditional GPGPU,
graph analytics, ML, and HPC workloads, on average CPElide
improves performance by 13% and 19% (17% and 20% for
workloads with moderate or higher inter-kernel reuse), energy
by 14% and 11%, and network traffic by 14% and 17%,
over the baseline 4-chiplet GPU and the state-of-the-art HMG,
respectively. Furthermore, for applications without significant
reuse CPElide provides equivalent performance to the baseline,
and CPElide’s benefits scale with the number of chiplets. To
the best of our knowledge, CPElide is the first to leverage CP
information to mitigate synchronization overheads in multi-
chiplet GPUs. Moreover, CPElide effectively monitors intra-
and inter-chiplet behavior without hardware changes.

II. BACKGROUND

A. Multi-Chiplet GPU Architecture

Each GPU in a MGPU system is composed of multiple
chiplets (e.g., 4 chiplets in Figure 3). Hence, such a GPU
is often called an MCM-GPU. MGPUs connect the MCM-
GPUs via an inter-GPU interconnect [53], [103], [122]. MCM-
GPU and MGPU designs have several important differences.
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Fig. 4: Current and proposed CP for chiplet-based systems.

Since MGPU systems connect multiple MCM-GPUs, if uni-
fied virtual memory (UVM) is desired they must keep data
coherent and consistent across GPUs. Thus, MGPUs focus
on communication across GPUs and introduce an additional
level of hierarchy to a variety of components, including cache
coherence [91], [116], memory consistency, scheduling [64],
and synchronization. While this work is important, we focus
on single GPU, multi-chiplet designs (i.e., a MCM-GPU)
because significant performance is lost within a MCM-GPU
(Figure 2). Moreover, solving the unique challenges MCM-
GPUs present to retain more data locally could also potentially
benefit MGPUs (Section VI).

Each GPU chiplet in a MCM-GPU has dedicated CUs, each
with a private L1 cache, and a shared L2 cache (Figure 1b,
Figure 3 breakout). In some setups each L2’s banks are
coherent within a single chiplet but incoherent with the rest
of the system [116], while in others all banks in the system
are coherent [117], [129], [141]. Chiplet-based GPUs also
introduce an additional level to the memory hierarchy: an
LLC which is shared across all chiplets, although LLC banks
and the device’s HBM (High Bandwidth Memory) are also
divided across chiplets. A MCM-GPU’s memory subsystem is
NUMA and its inter-chiplet links do not provide full aggre-
gated LLC/HBM bandwidth to each chiplet [16]. As a result,
accesses to another chiplet’s memory incur additional latency.
Accordingly, inter-chiplet bandwidth is limited [116] and bulk
flush and invalidation operations are expensive. Thus, when

accessing data modified by another chiplet current designs
either: a) incur additional latency to access a shared cache’s
remote bank [116] or b) flush dirty data from the producer
chiplet, allowing consumer chiplet(s) to subsequently fetch
the data from a shared LLC or global memory [117]. Since
both approaches incur significant overhead, we investigate
alternatives that retain more data in each chiplet’s L2 cache.

B. GPU Command Processors

Figure 4a shows a simplified CP [8], [42].! For GPUs,
the programmable CP interfaces between the software, via
the driver and runtime (e.g., AMD’s ROCm [11] stack),
and the hardware. Since CPs are programmable, vendors can
adjust their functionality without changing hardware. Once
a user has written their GPU program [9], [69], [101], the
underlying GPU driver and runtime create software queues and
enqueue the program’s GPU kernels, along with any memory
management and inter-kernel synchronization, as packet(s).

The CP’s packet processor maps each packet onto a hard-
ware compute queue using its queue scheduler. The queue
scheduler maps t kernels to M CUs while maximizing re-
source utilization. To meet this goal GPUs support multiple
hardware queues [8], [81], [97], [109] to manage independent
work submitted asynchronously with GPU streams [9], [85],
[99]. Typically each stream is mapped to a queue and each
queue holds one or more kernels from that stream. The CP
maintains intra-stream, inter-kernel dependencies but often
executes different streams concurrently. Within a queue, a
queue entry describes a given kernel including thread dimen-
sions, register usage, scratchpad size, and pointers to kernel
arguments being accessed. The CP’s WG scheduler reads these
fields to dispatch WGs to CUs. Generally, WG schedulers
issue all WGs from a kernel in round-robin fashion across the
available CUs [109], [110] before switching to another kernel.
Multi-chiplet GPUs have per-chiplet CPs [88] to handle local
scheduling decisions like which CU on a chiplet to schedule a
given WG and which WF to schedule on a given CU. However,
to the best of our knowledge they do not have a global CP.

C. GPU Coherence & Consistency

Most GPU applications are highly parallel, infrequently
share data globally, and infrequently synchronize, often only
implicitly at the beginning and end of a kernel. Thus mono-
lithic GPUs use simple, software-driven, VI-like coherence
protocols where data is either in the Valid (V) or Invalid (I)
state [4], [46], [76], [116], [119]-[121]. This coherence proto-
col invalidates L1 caches on acquires (synchronization reads)
while releases (synchronization writes) ensure all previous
writes complete. Acquires and releases must also ensure data
reaches a memory level shared by all the CUs (often the L2,
Figure 1b). Although these synchronizations are heavyweight,
since most GPU applications synchronize infrequently the
overheads of flushing/invalidating L1 caches are acceptable.

'Without loss of generality, we use AMD terminology when discussing
CPs. NVIDIA utilizes embedded RISC cores for similar purposes [1], [98].
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Fig. 5: Proposed CPElide architecture (changes in yellow).

Since synchronization is so expensive, GPU consistency
models extend the popular sequentially consistent for data-
race-free (SC-for-DRF) CPU consistency model [20], [87]
with scopes. Thus, it is called sequentially consistent for
heterogeneous-race-free (SC-for-HRF) [3], [41], [48]-[50],
[86], [120], [136]. We focus on SC-for-HRF’s global scope
since implicit kernel boundary synchronization uses it. Glob-
ally scoped synchronization is visible to all GPU threads by
invalidating all valid data in local caches (e.g., L1s) at acquires
and waiting for all writes to complete at releases.

III. DESIGN
A. Proposed CPElide Architecture

Figure 5 shows CPElide’s overall design. To track memory

accesses from data structures (e.g., arrays) across chiplets and
elide implicit synchronization, CPElide implements a Chiplet
Coherence Table in the global CP’s private memory. This
involves the GPU’s coherence protocol and consistency model
(Section II-C). Each table row has 4 fields: data structure (e.g.,
array base address), address range(s) per chiplet, access mode,
and a bit vector indicating which chiplets are accessing this
data structure and their access state (Section III-B). Each entry
requires 1 byte (chiplet vector), 1 bit (access mode), 28 bytes
(address range(s)), and 4 bytes (base address).
Sizing Chiplet Coherence Table: Prior work found most GPU
programs access 8 or fewer data structures per kernel and these
data structures are reused within 4 kernels [77], [130]. To
confirm this we analyzed our application’s (Table II) inter-
kernel access patterns. Most reused data structures within 1-2
kernels, except the RNNs which occasionally reused data up to
4 kernels later. Moreover, our applications have an average of
4 input arguments per kernel (max 8). Thus, we conservatively
sized CPElide to hold 8 unique data structures per kernel for
8 kernels based on our analysis. As a result, CPElide can
simultaneously track 64 entries. The total space for a 4-chiplet
system is ~2 KB. However, if access patterns changes in the
future, since CPs are programmable data structure tracking can
be increased (at the cost of additional CP memory).

Since all work dispatched to the GPU goes through the
global CP (Section II-B), the global CP has a global view
of what data is being accessed in each chiplet at a given

Listing 1: Proposed new API calls to mark array access modes.

time. The global CP gets this information for the kernel
argument via the metadata retrieved from kernel packets.
Next, when the global CP dispatches the WGs to chiplets,
it updates the Chiplet Coherence Table for each data structure
the kernel accesses. However, kernel packets do not always
provide all necessary information [9], [101], [124]. Thus, we
utilize software information (either from the programmer or
the compiler) about access mode and address ranges. Each
chiplet a kernel is scheduled on accesses this information
(Section III-B). The global CP also uses this information to
estimate what data may still be in the chiplet’s L1 and L2
caches at the end of a given kernel. Accordingly, instead of
performing implicit acquires and releases on all chiplets at
each kernel boundary, CPElide uses the Chiplet Coherence
Table’s information to generate the appropriate per-chiplet
acquires and releases to invalidate and/or flush per-chiplet
L2 data just before another chiplet needs it. However, since
CPElide does not modify the coherence protocol, the L1
caches must still be invalidated/flushed at kernel boundaries.

B. Proposed Changes

To perform the operations described in Section III-A,
CPElide requires several key changes:

Command Processor (CP): As discussed in Section II-B,
modern GPUs have per-chiplet CPs. However, they do not ex-
ploit all of the information available to them. Figure 4b shows
our redesigned CP, which adds a global CP, splits the CP’s
functionality between the local, per chiplet CPs and global
CP, and adds new functionality into the local CP per chiplet.
In addition to managing local scheduling decisions, our local
CPs also pass runtime information back to the global CP. The
global CP acts as the interface with the host and dispatches
work across chiplets. It also issues CPElide’s acquires and
releases, and houses CPElide’s Chiplet Coherence Table. We
discuss these changes further in Section III-C.

Labeling Memory Accesses: To identify each global memory
data structure, like prior work [5], [27], [92], [119], [120] we
label each data structure and their access mode: Read-Only (R)
or Read/Write (R/W). Although monolithic GPUs generally
only need R and R/W labels [76], [119], chiplet-based GPUs
must also know where these accesses are scheduled. Without
scheduling information it is unknown which chiplet(s) have the
most up-to-date copy and thus the system must conservatively
generate acquires/releases for all chiplets.

There are several ways for the compiler/programmer to pass
this information to the CP. Listing 1 shows an example of the
new API calls we added to HIP’s open source ROCm [11]
for this purpose. We use hipSetDevice to bind a stream
to chiplet(s) j. Specifically, for each data structure in a given




typedef tuple<Addr_t,
rangeChiplet;
//I1f kernel to be launched on 2 chiplets
//Each chiplets works on half of input & output
//numSchedChip: # chiplets to schedule kernel on
vector<rangeChiplet> C_ranges (numSchedChip) =
{make_tuple (C_d[start], C_d[mid], 0),
make_tuple (C_d[mid+1], C_d[end], 1)};
vector<rangeChiplet> A_ranges(numSchedChip) =
{make_tuple (A_d[start] , A_d[mid], 0),
make_tuple (A_d[mid+1] , A_d[end], 1)};
hipSetAccessModeRange (square, C_d, 'R/W’, C_ranges);
hipSetAccessModeRange (square, A_d, 'R’ , A_ranges);
hipLaunchKernelGGL (square ,..., C_d, A_d, N);

Addr_t, LogicalChipletID>

Listing 2: Proposed API calls to mark both access modes and
address ranges for data structures. Although the programmer
does not know which chiplets the kernel will map to, the
number of chiplets it will use is configurable.

kernel, the programmer uses our new hipSetAccessMode
call to specify if the data structure will be R or R/W in that
kernel. We extended ROCm to add this information to the
kernel packet, allowing the global CP’s packet processor to
access it. Optionally, programmers can instead use our new
hipSetAccessModeRange to specify finer-granularity in-
formation by providing both access mode and address range(s)
within a data structure that chiplet(s) will be operating on
(Listing 2). Although the compiler/programmer should be able
to determine most GPU access patterns statically (e.g., record
and replay [107], virtual ISAs [75], or effect inference [128]),
when this is not possible hipSetAccessMode should be
used. For example, if a kernel accesses different data structures
depending on control flow, the software must specify all
regions that may be accessed by the kernel. Similar to GPU
consistency models, the compiler/programmer must correctly
mark the ranges or the outputs may be incorrect.

Tracking Accesses in CP: Figure 5 shows how CPElide uses a
2n-bit bit-vector (n is the number of chiplets) to track which
data structures are accessed, their mode (R, R/W), and by
what chiplets. Each table row tracks a data structure, and
the columns specify the virtual address ranges for different
chiplets, the access mode, and the 2n-bit bit-vector tracks what
state (States) the data structure will be in.

Coarsening Data Structure Labels: CPElide tracks up to 8
data structures per kernel (Section III-A). If a kernel accesses
more than 8 data structures CPElide coarsens the information
for before adding it to the Chiplet Coherence Table. To do
this we first search the table to find if any data structures are
contiguous in memory. If any are found, CPElide combines
their entries. The combined entry tracks all chiplets any of
these data structures were assigned to, and its data structure
identifier in the chiplet vector stores the more conservative
of the states to ensure correctness. For example, if one data
structure is R and the other is R/W, the combined state of
the chiplet vector will be R/W. However, if no such structure
is found, then we coarsen the data structures closest to
one another in memory. Although this may perform more
acquire/releases than necessary, since the memory between
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Fig. 6: Internal state tracking mechanism for a data structure
in the CPElide Table for a given chiplet.

them is not accessed, it ensures correctness. Finally, while not
observed, if parts of a data structure are accessed in different
modes and software cannot statically determine their ranges,
CPElide creates a chiplet vector per range.

States: Each Chiplet Coherence Table entry has four possible
states, represented by 2 bits per chiplet in the chiplet vector:

e Not Present (00): This state indicates that a data structure
does not exist in chiplet ¢’s L2 cache.

o Valid (01): After a kernel that only reads (access mode
R) a data structure, if its data is in chiplet ¢’s L2 cache,
it will be Valid. Thus, if later chiplet j wants to write
this data structure, chiplet ¢’s copy must be invalidated
or marked as Stale.

e Dirty (10): After a given kernel that reads or writes
(access mode R/W) a data structure, if its data remains
in chiplet ¢’s L2 cache, its values may be Dirty. Thus,
if later chiplet j wants to access this data, we must first
flush it from chiplet .

o Stale (11): The Stale state indicates when a data structure
might be in chiplet m’s cache, but its values are not the
most up-to-date (unlike Not Present, which guarantees
the data is not in a chiplet’s caches). For example, if
another chiplet & wrote the data structure after chiplet m
accessed it, and chiplet m has not accessed the data again
subsequently, the data structure may still be in m’s L2
cache. Thus, chiplet m must be invalidated before it is
safe for m to access it again.

Figure 6 shows CPElide’s state diagram, which tracks the
state of each data structure in the Chiplet Coherence Table. The
circles denote the aforementioned 4 possible states of a data
structure in the Chiplet Coherency Table. The arrows indicate
the required state transition when the conditions indicated by
the text alongside the arrows occur. For example, the Valid
state’s loop indicates that the data structure’s state remains in
Valid whenever one of the following conditions (indicated as
ALR/ARR/Flush in Figure 6) occur: ALR: a local read; ARR:
a remote read; or a Flush: an on-going L2-cache operation
that may have been initiated by updates on a different data
structure. In the table, each Chiplet Vector entry represents the
state at a particular chiplet for one data structure. Unlike most
coherence protocols, CPElide does not need transient states
since it is not waiting for operations to complete — instead



it denotes how the data is being accessed in each chiplet.
The transitions show how a Chiplet Coherency Table entries’
state changes when different events like Acquires, Releases,
Reads, or Writes occur. This state may or may not be the
same as the actual state of the corresponding cache lines in the
cache since the table entries’ state is a conservative, coarse-
grained estimate of a data structure in a given chiplet’s L2.
Moreover, the table’s state transitions occur at kernel launches.
For example if a data structure was Valid in chiplet 0’s cache
at the end of kernel 1, and chiplet O now receives a kernel that
writes the same data structure, the state for this data structure
in the table transitions to Dirty for chiplet 0, even though the
kernel has not started. Some key Figure 6 state transitions are:

o Valid — Stale: When the address range on a chiplet 7
will be modified by another chiplet j in a soon-to-be-
launched kernel, CPElide marks ¢’s entry as Stale for this
data structure. Thus, chiplet ¢’s data in its L2 is now
incoherent. However, CPElide will invalidate it before
subsequent uses.

o Dirty — Stale: When an address range on a chiplet ¢ will
be written by another chiplet j in a soon-to-be-launched
kernel, we must flush the dirty data from chiplet i’s L2
cache before chiplet j accesses it. Accordingly, CPElide
issues a flush (release), then transitions to Stale. Also,
since the baseline coherence protocol keeps the a clean
copy of the line in chiplet ¢’s L2 cache, if these addresses
will be subsequently read by chiplet ¢ then CPElide
further generates an invalidate (acquire) to ensure no stale
data is accessed and transitions to Invalid.

o Stay in Valid on remote accesses: CPElide elides unnec-
essary invalidations by allowing caches to retain clean
copies if other chiplets are also only reading data from a
given address range.

e Stay in Dirty: CPElide’s software-range based tracking
helps increase L2 reuse. For example, if chiplet ¢ accesses
the same data structures across kernels, it is unnecessary
to flush ¢’s dirty data. Instead CPElide elides this release,
increasing reuse.

Lazy Acquire/Release: Current GPUs perform releases at the
end of kernels. CPElide instead lazily performs releases as
needed. Specifically, CPElide only generates a release for a
specific chiplet j once CPElide observes a subsequent kernel
being scheduled on a different chiplet k£ will access a data
structure in Dirty on chiplet j. Similarly, CPElide only gener-
ates an acquire for a specific chiplet ¢ once CPElide observes
that subsequent kernels (kernel A) caused a data structure(s)
accessed in chiplet 7 to become stale, and another subsequent
kernel (kernel B) wants to access the same data structure on
chiplet 7. Additionally, CPElide performs the release after the
acquire associated with the start of a subsequent kernel, but
before the next kernel issues any memory accesses. In the
baseline coherence protocol when a fully dirty line is written
back, the cache retains a clean copy of the line and transitions
to a shared state. Delaying the release helps CPElide retain the
lines written by the previous kernel. Moreover, this change still

©Launch Enable

Local Local Local Local
CP dp cp cp

Fig. 7: Communication between local CPs and Global CP.

produces SC-compliant results for programs with no heteroge-
neous races (i.e., SC-for-HRF programs), since no subsequent
accesses are performed before any necessary release (flush)
and acquire (invalidation) of these operations are completed.
Consistency Model Impact: We assume the standard SC-
for-HRF consistency model. Thus, like current GPUs, any
correctly synchronized, simultaneously executing threads will
either not be writing the same address or must explicitly
synchronize to guarantee correctness. Explicit synchroniza-
tion operations do not impact the CP’s tracking of implicit
synchronization: even programs with explicit synchronization
must still implicitly synchronize at kernel boundaries.

C. Functionality

Launching Kernels: Since CPElide removes the implicit
acquires and releases at kernel boundaries for L2 caches, we
adjust how the global CP launches kernels. Once a kernel is
reaches the head of a hardware queue in the CP’s packet pro-
cessor, the queue scheduler attempts to schedule the kernel’s
WGs onto the currently available resources (Section II-B).
Before dispatching any WGs the global CP inspects all data
structures the kernel accesses by checking its Chiplet Co-
herence Table to determine what state these data structures
are in on all chiplets. These checks happen once per kernel
— ensuring no redundant Chiplet Coherence Table updates.
If any prior kernels accessed the same data structure(s), the
global CP determines if acquire and/or release operations are
necessary to ensure that the data accessed by those kernel(s)
is flushed or invalidated from the chiplets that accessed it. For
any data structures that were accessed by the prior kernels,
the global CP generates synchronization operations for the
appropriate chiplet(s) to ensure correctness. The global CP
sends these synchronization operations to the local CP(s),
which send these requests to its corresponding L1 and L2
caches to invalidate or flush data. This approach could also be
augmented by distinguishing between read-only and not read-
only data [119] to only generate releases if one of the kernels
writes the data structure. The local CPs will not launch WGs
from the next kernel until the appropriate acknowledgments for
acquires and releases are received by the global CP, which then
sends a “launch enable” message to the local CPs. Since these
acquire/release acknowledgments and the final launch signal
are on the critical path, we model their overhead (Section IV).
Finally, once the acquires and releases complete the global
CP resets the appropriate bit-vector to Not Present to avoid
generating further acquires/releases for the same data structure.
Local/Global CP Communication: The global CP and local
CPs are connected through a crossbar (Figure 3). If CPElide



generates any acquires or releases when launching a kernel,
these requests are sent across the crossbar from the global CP
to the local CP (Figure 7). After sending out these operations,
the global CP uses an acknowledgments (ACKs) count to
ensure they complete, as discussed in Launching Kernels.
Generating Release Requests: CPElide only sends a release
(flush) when a data structure will be accessed in a new kernel
and that kernel will be scheduled on chiplet(s) other than those
where it is in Dirty. This ensures a chiplet never reads a
stale value. However, if the next kernel accessing this data
is scheduled on the same chiplet(s) as the previous kernel,
CPElide elides the release if the WGs continues accessing the
same address range(s) in a data structure, on the same chiplets.
Generating Acquire Requests: CPElide only sends an ac-
quire (invalidation) when a new kernel will access a data
structure and this kernel will be scheduled on a chiplet(s)
where the data structure is in Stale. This ensures that a chiplet
does not read stale values, without requiring implicit acquire
requests across all chiplets before each kernel.

Removing Entries: When CPElide generates an acquire or
release, it also updates the chiplet vectors per Figure 6. If the
chiplet vector’s state is Not Present (00) for all chiplets, we
remove the entry from the table. Thus, if an acquire/release is
generated for all chiplets, all table entries will be removed.
Indirect & Irregular Accesses: Although most GPGPU
applications have regular access patterns [43], [133], [139],
some are more irregular [23], [26], [61], [90], [105], [135].2
For irregular accesses, CPElide identifies how a data structure
will be accessed in a given kernel. In Section V, we show that
CPElide effectively supports workloads with indirect accesses.
However, if this information cannot be determined statically
for pointer-based accesses, like the baseline CPElide con-
servatively performs implicit acquires and releases at kernel
boundaries. Although dis-contiguous address ranges are not
common in irregular GPGPU workloads, CPElide supports
both contiguous and dis-contiguous address ranges. However,
applications with dis-contiguous address ranges may increase
Chiplet Coherence Table entries, which we could compensate
for by increasing the table size (Section III-A) if neces-
sary. Similarly, although rare, CPElide also supports GPGPU
workloads that use recursion [115], [132]. For languages
like OpenCL, CPElide can utilize access mode information
for all data structures in the kernel declarations (Listing 1).
For languages like CUDA and HIP, which do not have per-
kernel labels, CPElide would require conservatively labeling
the data structures and access modes for all kernels that
may be recursively called. Alternatively, in GPU ISAs where
additional instructions could be added we could add special
instructions to perform this labeling per kernel.

IV. METHODOLOGY
A. Baseline GPU Architecture
We model a tightly coupled CPU-GPU architecture with

a unified shared memory address space and coherent caches.

2The data structures in all applications we study (Table II) use either 1D
or 2D arrays.

GPU Feature Configuration

GPU Clock 1801 MHz
CUs/Chiplet; Complexes/Chiplet 60; 1
SE/Chiplet, SA/SE 4,1
Num Chiplets 2,4, 6
Total CUs 120, 240, 360
Num SIMD units/CU 4
Max WF/SIMD unit 10
Vector/Scalar Reg. File Size / CU 256/12.5 KB
Num Compute Queues 256

LI Instruction Cache / 4 CU
L1 Data Cache / CU

16 KB, 64B line, 8-way
16 KB, 64B line, 16-way

L1 Latency 140 cycles
LDS (Local Data Share) Size / CU 64 KB
LDS Latency 65 cycles

L2 Cache/chiplet
Local/Remote L2 Latency
L2 Write Policy

8 MB, 64B line, 32-way
269/390 cycles
Write-back with write allocate

L3 Size 16 MB, 64B line, 16-way
L3 Latency 330 cycles
Main Memory 16 GB HBM, 4H stacks, 1000 MHz
Inter-chiplet Interconnect BW 768 GB/s

Scheduling Policy Static Kernel Partitioning

TABLE I: Simulated baseline GPU parameters

All CPU cores and GPU CUs are connected via an inclusive
L3, which is also the directory. Figures 1 and 3 illustrate
our baseline GPU, which is similar to prior work [116],
[117]. Each GPU chiplet has an L1 cache and LDS per CU,
and an L2 cache shared across the chiplet’s CUs. The per-
chiplet L2 caches are connected via inter-chiplet links using a
crossbar [116]. Section IV-C1 discusses more design choices.

B. System Setup

Although CPElide could be implemented in existing GPUs
by re-programming the CPs, GPU vendors have not disclosed
an API [79], [80], [114], [140]. Thus, we simulate CPElide
in gem5 [42], which our group recently extended to support
multiple chiplets [141].> Although other simulators also sup-
port modern GPUs [18], [65], [126], we chose gem5 because
it has the most detailed CP model and models GPUs with high
fidelity [42]. Specifically, we use ROCm 1.6 [11] and gem5
v21.1 [19], [84], which we extended to model local and global
CPs, and implemented CPElide in the global CP. We modified
the workloads to label the address ranges and access modes
similar to the Section III-B examples.

Table I summarizes the common key system parameters,
which is based on an AMD Radeon VII GPU and which
our group previously validated to tune gem5 relative to real
hardware [55], [65], [112], [113], [137]. To measure energy
consumption we leverage prior work’s per-access GPU en-
ergy models [30], [31], [45], [104], [140], scaled to handle
multi-chiplet GPUs. Since CPElide only impacts the memory
subsystem, we only report energy numbers for it. Similar to
prior work, the modeled local/global CP latency is 2 us [42],
[96], [110]. The CPs frequency is 1.5 GHz [98] and the CPs
private memory’s access latency is 31 cycles [74]. Since our
tables use ~2 KB (Section III-A), they fit in the CP’s private
memory and do not change the GPU’s area. The global CP and

3 Although our group’s prior work refers to the gem5 support as “multi-
GPU”, it does not have an inter-GPU interconnect and its chiplets are
configured similar to a MCM-GPU in Figure 3 [116], [117].



local CP are connected via high bandwidth crossbar, with 65
cycles of unicast latency and 100 cycles of broadcast latency.
We factor this overhead into CPElide. However, since there are
few messages and communication only happens at the start of
some kernels, the overall impact is negligible.

Although our changes (Section III-B) add some complexity
to CPs, they only add ~2% to the CP’s total lines of code.
We also estimate CPElide’s computational requirements by
executing our changes (Section III-B) on a CPU with similar
specifications to the CP. Specifically, CPElide’s algorithm
consists of: reading/writing the Chiplet Coherence Table for
the kernel’s data structures and generating the appropriate
acquires/releases. Although the first component varies with
number of data structures per kernel, on average our ap-
plications access 4 data structures per kernel. Overall, the
CP requires 6 us to perform CPElide’s new operations. We
incorporate this overhead into CPElide, although since GPU’s
enqueue kernels before launch and nearly all kernel’s runtime
exceeds 6 us, this latency is usually hidden for all but the first
kernel. Thus, our changes have a small impact on the CP’s
complexity and performance.

C. Configurations

To determine CPElide’s efficacy, we evaluate the follow-
ing configurations: (scheduling and page placement policies
discussed in Section IV-C1):

Baseline: Baseline implements the multi-chiplet GPU de-
scribed in IV-A. It use gem5’s VIPER GPU coherence proto-
col, extended for chiplet-based GPUs [141]. Baseline forwards
remote requests to the home node and writes through remote
stores and writes back local stores.

CPElide: Our proposed CPElide approach (Section III) uses
Baseline’s coherence protocol, forwarding policy, and write
policies, but elides acquires and releases as appropriate.
HMG (NHCC): HMG [116] is a state-of-the-art chiplet-based,
MGPU coherence protocol. Although HMG was primarily
designed for MGPU systems, since we focus on a MCM-
GPU (Section II-A), we compare against HMG’s MCM-GPU
variant. Since HMG’s code is not publicly available, we
implemented it in gem5. Our HMG uses a L2 coherence
directory with 12K entries for each GPU chiplet, with each
entry covering four cache lines (i.e., the directory covers 64K
cache lines). This sizing is equivalent to largest directory
size HMG studied.* In HMG the home node always contains
each memory location’s most up-to-date value. Thus, unlike
Baseline and CPElide, HMG writes through all caches entries
to its home node. Further, HMG also sends writes through
to memory and retains a valid copy in the home and sender
L2 caches. Although HMG evaluates write-through caches, it
also discusses a potential write back L2 cache variant. We
also implemented and evaluated this variant, but it performed
significantly worse (13% geomean) than the write through L2

4gem5 uses 64B cache lines, while NVArchSim uses 128B cache lines.
Thus, gem5 has double the number of cache lines for a given cache size. As
a result, in gem5 HMG has twice as many directory entries as NVArchSim
for a given cache size, reducing HMG’s directory pressure.

Application [ Input

Moderate-to-high inter-kernel reuse
BabelStream [32], [33] 524288
Backprop [25] 65536
BFS [25] graph128k.txt
Color-max [26] AK.gr
FW [26] 512_65536.gr
Gaussian [25] 256x256
HACC [78] 0.5 0.1 512 0.1 2 N 12 rcb
Hotspot3D [25] 512 8 20 power_512x8 temp_512x8
Hotspot [25] 512 2 20 temp_512 power_512
LUD [25] 512.dat
Lulesh [78] 1.0e-2 10
Pennant [78] noh.pnt

RNN-GRU [94], [95] BS:4, TS:2, Hidden Layers: 256
BS:16, TS:4, Hidden Layers: 512
BS:4, TS:2, Hidden Layers: 256

BS:16, TS:4, Hidden Layers: 512

RNN-LSTM [94], [95]

Square [12], [21] 524288 1 2 2048 256
SSSP [26] AK.gr
Low inter-kernel reuse
BTree [25] mil.txt
CNN (Conv+Pool+FC) [35] 128x128x3, BS:4
DWT2d [25] rgb.bmp 4096x4096
NW [25] 8192 10
Pathfinder [25] 200000 100 20
SRAD_v2 [25] 2048 2048 0 127 0 127 0.5 2

TABLE II: Evaluated Benchmarks

variant because it reduces HMG’s precise tracking benefits.
Thus we use HMG’s write through variant in our evaluation.

1) Design Decisions: We also made the following design
choices for the different configurations (Section IV-C):
Scheduler: We use static, kernel-wide WG partitioning to
divide a kernel’s WGs into groups [16], [89]. These groups
are sent to individual chiplets, where the local CP’s local
dispatcher round robin schedules them onto individual CUs.
Although Locality & Data Movement (LADM) [64] proposes
more nuanced compile-time static analysis of kernels, we use
static kernel-wide partitioning since it is most common.
Page Placement Policy: To isolate CPElide’s effects as much
as possible, all configurations use the state-of-the-art First
Touch page placement policy [16], [116]. The first touch
policy determines the home node (chiplet) for a given physical
address. However, sometimes first touch is ineffective [38] and
different placement policies can skew performance.

D. Benchmarks

We examine 24 popular traditional GPGPU, graph analyt-
ics, HPC, and ML applications with diverse memory access
patterns from gemS5-resources [21]. Table II summarizes these
workloads, which have up to 510 dynamic kernels and 11
Chiplet Coherence Table entries, and never overflow the
Chiplet Coherence Table. We excluded unsupported appli-
cations in gem5 (e.g., those using textures [25]). For all
applications we configured their input sizes to ensure the
chiplet-based GPU had reasonable occupancy and memory
footprints [51]. Moreover, given our modeled system (Sec-
tion IV-A) we modified all applications to use UVM. We
also updated all applications to use page-aligned memory
allocations to reduce unintentional false sharing [6]. Like prior
work [47], [51], [66] we group the applications into those with:
(a) moderate to high inter-kernel reuse and (b) low to no inter-
kernel reuse. We compute this by calculating the miss rate



reduction from inter-kernel reuse with no flush/invalidation
overhead.

E. Sensitivity Study: Number of Chiplets

The ROCm version integrated with gem5 for multi-chiplet
experiments [141] only supports up to 7 chiplets, due to ROCm
1.6 memory aperture size constraints. Thus, to understand
the impacted of the number of chiplets, we evaluated all
applications and configurations for 2, 4, 6, and 7 chiplets. In
Section VI we discuss how CPElide applies to systems with
additional chiplets. Moreover, we use strong scaling — same
amount of work, but divided across the chiplets — since this
is representative of an application running on a chiplet-based
GPU of a given size.

V. RESULTS

Figure 8 shows the Baseline’s, HMG’s, and CPElide’s
normalized performance, across all applications, for 2-, 4-, 6-
and 7- chiplet GPUs. We subdivide this figure into two groups:
moderate to high inter-kernel reuse and low inter-kernel reuse.
Figure 9 shows the memory subsystem’s normalized energy
consumption for a 4-chiplet GPU, divided into L1 instruction
and data caches, LDS, L2 cache, NOC, and DRAM. Figure 10
shows the normalized network traffic for a 4-chiplet GPU,
measured in flits and divided into multiple components: L1-
to-L2, L2-to-L3, and remote. Overall, CPElide improves per-
formance (13%, 19%), energy consumption (14%, 11%), and
network traffic (14%, 17%) over both the Baseline and HMG,
for 4-chiplet GPUs. These trends also continue for 2-, 6-, and
7-chiplet GPUs. Moreover, CPElide does not hurt performance
for applications with little or no reuse.

A. 4-Chiplet GPUs: CPElide vs Baseline

Moderate-to-High Inter-Kernel Reuse: CPElide usually im-
proves performance for workloads with larger (> 15%) inter-
kernel reuse in 4-chiplet GPUs (Figure 8). Since these appli-
cations have significant inter-kernel reuse, they benefit from
CPElide preserving their inter-kernel locality. However, the re-
sults vary with each application’s access patterns. Applications
with iterative GPU kernels and uniform access patterns (e.g.,
BabelStream and Square) can easily divide WGs into chunks
that can be scheduled on independent chiplets with limited
remote accesses and their working sets fit into the chiplet’s
aggregate 1.2 capacity. Thus, CPElide outperforms Baseline
by 31% on average for them. Likewise, the RNN’s have
producer-consumer style inter-kernel reuse, including input
matrix weights. CPElide preserves this reuse, improving their
performance by 11% on average. Finally, Hotspot3D performs
a memory bound 3D stencil; inter-kernel L2 reuse for its read-
only arrays help CPElide outperform Baseline by 37%.
More irregular applications like Color, SSSP, and BFS
have many read-only memory accesses [52]. Thus, avoiding
unnecessary acquires improves their inter-kernel reuse and
performance: 16% for Color, 14% for SSSP, and 6% for BFS
(BFS has less potential inter-kernel reuse). Similarly, Pennant
and Lulesh use indirect addressing or have unstructured data

structures causing irregular memory access patterns [78].
However, since these accesses are limited to a subset of
addresses that fit into the aggregate L2 capacity, CPElide
improves their performance by 38% and 16%, respectively.

GPU applications also frequently access data in three
phases: loading data into the LDS, performing compute opera-
tions on the data, and finally writing data back to global mem-
ory. Here inter-kernel cache locality only helps for the first
(read into LDS) and the last (write to global memory) phases.
Thus, these application’s benefits depend on ratio between the
phases: compute-bound applications see little benefit, whereas
memory-bound applications with few ALU operations benefit
more: e.g., Backprop (10%) and LUD (48%).

Other applications have weak correlation between inter-
kernel reuse and performance. Hotspot is compute-bound with
sufficient on-chip memory bandwidth to keep the CUs busy
— hence CPElide’s speedup for it is low. Hotspot is also
bottlenecked by compute stalls. Thus, loading the LDS faster
via more L2 hits does little to alleviate this problem. Moreover,
sometimes (e.g., FW, Gaussian, HACC) there is sufficient
memory-level parallelism to hide the L2 cache misses caused
by implicit kernel boundary synchronization. Thus, although
CPElide improves their L2 inter-kernel reuse, other accesses
must go to main memory. Consequently, hitting more in the
L2 cache does not significantly improve their performance.
Low-to-No Inter-Kernel Reuse: Unsurprisingly, CPElide and
Baseline perform similarly for workloads (e.g., BTree, CNN,
DWT2D, NW, and Pathfinder) with limited or no inter-kernel
reuse. Since these applications do not have significant reuse,
eliding acquires and releases does not significantly affect them.

B. 4 Chiplet System: CPElide vs. HMG vs. Baseline

Moderate-to-High Inter-Kernel Reuse: For applications with
little to no remote accesses (e.g., BabelStream, Square),
CPElide elides all flushes and invalidations except the final
ones (Figure 8). However, since HMG uses write-through L2s,
it always writes through to memory, generating much more L2-
L3 traffic than CPElide. This significantly slows down HMG
versus CPElide: 37% for BabelStream and 40% for Square.
Compared to Baseline, HMG caches remote traffic, evicting
some local data from the cache and generating invalidation
traffic. Consequently, HMG performs slightly worse than Base-
line, which cannot provide inter-kernel reuse.

Likewise Color, SSSP, and FW have input-dependent mem-
ory accesses which cause many remote accesses, since the
first-touch page policy is subpar when the access pattern is
irregular [38]. HMG caches all remote accesses at their home
node. Thus when the data locality in remote accesses is low, it
generates considerable invalidation traffic, and reduces space
for that chiplet’s local reads and writes, preventing HMG from
reusing more local data. On average, CPElide is 26% faster
than HMG for the graph analytics workloads. Baseline also
sometimes outperforms HMG for these workloads. Although
Baseline cannot provide inter-kernel reuse (unlike HMG), it
better leverages intra-kernel L2 cache reuse for local reads and
writes due to HMG caching data in the home node. Lulesh’s
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Fig. 10: Interconnect traffic for Baseline (B), CPElide (C), and HMG (H) on a 4-chiplet GPU, normalized to Baseline.

irregular access patterns cause considerable HMG invalidation
traffic, enabling CPElide to outperform HMG by 33%.

Pennant (38%) and LUD (48%) have significant inter-kernel
reuse. However, CPElide and HMG perform similarly for them
since both capture inter-kernel reuse and have low invalidation
traffic in HMG. For LUD, Baseline, HMG and CPElide all
have ~0% remote traffic because it has many LDS accesses,
the working set fits in the shared LLC, and the 4 chiplets
perfectly partition the work. CPElide and HMG also perform
similarly for compute-bound benchmarks (CNNs and Hotspot)
and benchmarks with limited inter-kernel reuse (Pathfinder,

DWT2D, and HACC). The RNNs have good remote read
locality from the shared input weights and intermediate results,
enabling HMG to slightly outperform (3%) CPElide since
CPElide does not cache remote reads. HMG also outperforms
Baseline by improving inter-kernel locality and providing
remote read intra-kernel locality. For most applications both
CPElide and HMG reduce L2-L3 traffic versus Baseline (Fig-
ure 10). Thus, to varying degrees both CPElide and HMG
preserve inter-kernel reuse. However, CPElide reduces L2-
L3 traffic by 37% versus HMG because CPElide does not
cache remote data, which often has low locality. CPElide



also leverages producer-consumer info without maintaining
directory sharer’s lists like HMG. HMG also has 23% more
remote traffic than CPElide due to invalidations from tying
four cache lines to a directory entry, which causes additional
invalidations and evicts local data on remote accesses. Overall
CPElide reduces network traffic by 17% over HMG.
Low-to-No Inter-Kernel Reuse: For limited inter-kernel reuse
applications (e.g., BTree, SRAD_v2), Baseline often outper-
forms HMG. Here HMG binding four cache lines to one di-
rectory entry causes many directory evictions. These evictions
also generate many remote invalidations, hurting HMG’s per-
formance. Consequently, Baseline outperforms HMG for these
workloads by 15% on average, while Baseline and CPElide
perform similarly. Although initially surprising, recent work
corroborated that HMG suffers in these situations [38]. Thus,
while HMG sometimes outperforms CPElide, in aggregate
CPElide outperforms HMG by intelligently eliding synchro-
nization operations. HMG fares much better against Baseline
by leveraging inter-kernel reuse. However HMG’s write policy,
remote read caching, and binding 4 cache lines to one directory
entry sometimes hurt it compared to Baseline.

Energy Consumption: Overall, in a 4-chiplet GPU CPElide
reduces average energy consumption by 14% and 11% over
Baseline and HMG, respectively (Figure 9). Unsurprisingly,
neither CPElide nor HMG significantly improves energy con-
sumption for the L1 or LDS relative to Baseline since neither
affects their behavior. Moreover, since these accesses are cheap
their overall energy contribution is low. For example, even
though LUD has many LDS accesses, the LDS’s energy per
access is much lower relative to the NOC and DRAM. Thus
LDS does not significantly affect LUD’s energy footprint.
Interestingly, neither CPElide nor HMG significantly affect
L2 energy — since the L2 must be accessed in both regardless
of whether the access hits or misses. Thus, CPElide’s and
HMG’s main differences come from reducing network traffic
and main memory accesses. While both CPElide and HMG
reduce these components energy over Baseline, CPElide’s
ability to retain more data in chiplets relative to HMG, via
eliding acquires and releases, reduces its average DRAM
energy by 4% over HMG. Similarly reducing network traffic
reduces CPElide’s NOC energy by 7% on average over HMG.
Generally, the reasons for these differences are similar to
Section V-B’s performance discussion. For example, HMG’s
better reuse for the RNNs helps it to provide slightly lower
energy consumption for them, while CPElide provides much
better energy consumption for applications like BFS where
HMG’s write-through L2s generate much more L2-L3 traffic,
increasing NOC energy.

C. Number of Chiplets

Generally, the 4-chiplet GPU CPElide and HMG trends also
hold for 2-, 6- and 7- chiplet GPUs (Figure 8). However, there
are some exceptions. For example, CPElide does not improve
Backprop’s, Hotspot3D’s, and SSSP’s 2-chiplet performance
since its aggregate 1.2 cache capacity is insufficient for their
larger memory footprint. Conversely, HMG fairs considerably

better for SRAD_v2 and DWT2D with 2-chiplets — since
there are fewer places for remote requests to go, there is less
invalidation traffic and fewer directory invalidations. HMG
also improves performance for benchmarks which suffered
from low locality in remote reads, since fewer remote cache
lines are cached since there are fewer remote nodes. Thus,
local cache line reuse increases. Consequently, for 2-chiplet
GPUs CPElide’s overall improvement over HMG decreases by
9% relative to the 4-chiplet GPU. For 6- and 7- chiplet GPUs
benchmarks like Hotspot3D and LUD have better hit rates with
CPElide, slightly improving their performance over 4-chiplets.
Conversely, with more number of chiplets HMG’s performance
for benchmarks like Hotspot3D suffers: its remote traffic
significantly increases, reducing remote locality, since the
working set is distributed across more chiplets. However, as
in Section V-B, HMG slightly outperforms CPElide (4%)
for the RNNs due to their good remote read locality and
CPElide not caching remote reads. Broadly these performance
trends continue for 7 chiplets: CPElide’s normalized average
speedup over Baseline is 17% and HMG normalized average
speedup is 6% worse than Baseline — largely due to the
increased number of remote nodes. Overall for 6- and 7-
chiplets CPElide’s average performance improvement over
HMG increases by 1% and 2% respectively relative to the
4-chiplet configuration, continuing to show CPElide scales
better than HMG as chiplets increase. Since future GPUs
are likely to have more chiplets per GPU, and CPElide’s
gains increase (slightly) as chiplets scale, CPElide improves
scalability. The performance improvements percentages are
similar for higher chiplet configurations since we use strong
scaling (Section IV-E). Moreover, Figure 8 normalizes the
results to Baseline for each number of chiplets — as chiplets in-
crease, absolute runtime decreases. In Section VI we also show
CPElide improves performance for multi-stream applications
and that CPElide’s additional overhead is small for systems
with even more chiplets — further demonstrating CPElide’s
benefits and scalability.

VI. DISCUSSION

Chiplet-based GPU versus Multi-GPU systems: To the best
of our knowledge, CPElide is the first to leverage CP infor-
mation to mitigate synchronization overheads in chiplet-based
GPUs. As discussed in Section II-A, MCM-GPUs and MGPUs
present different challenges. We focus on a single GPU with
multiple chiplets because there are opportunities for improved
reuse within a single GPU (Section V). However, CPElide
can also be applied to MGPU systems where each GPU has
multiple chiplets — by improving MCM-GPU performance,
CPElide can also potentially help MGPU systems.

CPElide Scalability: Due to issues with the version of ROCm
we use (Section IV-E) we were only able to simulate systems
with up to 7 chiplets. However, to study how CPElide scales
to larger numbers of chiplets, we performed a scaling study
where we added additional acquires and/or releases at kernel
boundaries to mimic those additional chiplets would need. For
example, for hypothetical 8- or 16-chiplet configurations we



use 2 and 4 sets of acquires/releases at kernel boundaries,
respectively. This study is conservative since it adds additional
sequential overhead to the 4-chiplet system — some of these
acquires/releases would be performed in parallel in a larger
system, but are serialized in our study. Thus, it overestimates
CPElide’s overhead for systems with more chiplets. Neverthe-
less, the additional overhead for hypothetical 8- and 16-chiplet
systems (graph omitted for space) are small: 1% and 2%
average slowdown for 8- and 16-chiplet systems, respectively.
Accordingly, CPElide continues to scale well for systems
larger numbers of chiplets.

Fine-grained Hardware Range Based Flush: Although
CPElide uses range-based tracking to determine which ad-
dresses to flush/invalidate, it must still flush or invalidate the
entire cache even if it is only necessary for some cached
addresses since CPElide is in the global CP. To avoid flushing
or invalidating the entire cache requires additional address
translation support: CPElide’s software hints track virtual
addresses but GPU L2 caches are physically addressed. Thus
to perform hardware range-based flushes, CPElide would need
to translate the virtual address ranges to physical addresses.
Since most GPU vendors use page-aligned array allocations,
flushes/invalidations of these address ranges can be broken
into page-wise requests. These requests can be sent to the
core, translated into the corresponding physical pages, and
then bypass the L1 cache (which must always be flushed at
synchronization points) to perform targeted flushes at the L2.
This technique may require multiple cache walks depending on
the address range’s size. However, if writeback time exceeds
cache walk time, then critical path latency will be unaffected.
Annotation Implications: CPElide requires access mode and
optionally address range software hints (via Section III-B’s
programming interface) — which may be challenging. How-
ever, prior work observed that many GPGPU workloads have
simple, linear/affine data structures [43], [133], [139]. Thus,
identifying this information in most GPGPU workloads is rela-
tively straightforward. Moreover, recent compiler and runtime
work showed that identifying such information can potentially
be automated, especially for workloads with relatively simple
access patterns (like most GPGPU workloads) [36], [71], [72],
[75], [107]. Accelerators (including GPGPUs) also increas-
ingly utilize high-level frameworks [2], [13] or libraries [10],
[67], [100], [102], [134]. These libraries and frameworks core
code is largely written by expert developers who can provide
the appropriate hints. Accordingly, most programmers can
utilize these highly tuned kernels with embedded access in-
formation. Thus, while like others [5], [27], [92] we manually
annotate programs (Section IV-D) to demonstrate CPElide’s
efficacy, library, high-level framework, or compiler integration
will avoid requiring most programmers to modify applications.
Multi-Stream Workloads: Although our workloads do not
use multiple streams, CPElide will also help multi-stream
workloads that concurrently run independent kernels from
different streams. Data movement and locality are also chal-
lenging here since concurrent kernels may contend for shared
caching resources. Accordingly, CPElide’s ability to track

data placement and elide unnecessary implicit synchronization
can improve performance. To demonstrate this we evaluated
streams, the only GPU benchmark in gemS5-resources [21]
that used multiple streams. We also extended a subset of
our benchmarks (Table II) to run multiple parallel streams to
mimic concurrent jobs, similar to prior work [62]. Overall,
on average CPElide outperformed HMG by 12% for these
workloads (graph not shown due to space constraints) for
4-chiplet systems. Largely the trends mirror single-stream
workloads with similar access patterns, although for some with
moderate-to-high inter-kernel reuse CPElide and HMG see
additional benefits over Baseline due to higher synchronization
costs. Thus, CPElide also helps multi-stream workloads.
Managing Implicit Synchronization at Driver: Like the
CP, the GPU driver also knows which data structures each
kernel accesses. Thus, the GPU driver could manage implicit
synchronization. However, since the driver does not know
which chiplet(s) a kernel’s WGs will be scheduled on, the
CP would have to frequently send this information to the
driver (as discussed in Section VII). Prior work has shown this
adds significant latency, hurting performance [28], [79], [140].
Conversely, CPElide is tightly integrated with the GPU at the
global CP, where scheduling decisions are made. Nevertheless,
applying CPElide at the GPU driver would also be novel.
Directories: Although CPElide’s tracking mechanism bears
some similarity to directory-style coherence protocols, they
serve different, complementary purposes. Directory protocols
primarily focus on fine-grained, cache line granularity coher-
ence ordering between requests. Conversely, CPElide’s tracks
larger coarse-grained data structures. Instead CPElide only
enforces ordering at implicit synchronization points, not on a
request-by-request basis like many directories. Thus, CPElide
complements existing directory protocols, focusing on when
to perform and elide synchronization operations.

Kernel Fusion: GPU software frequently use optimizations
such as kernel fusion [34], [37], [39], [68], [123], [131], [144]
to combine operations into a single kernel to avoid reduce data
movement and redundant global memory accesses. However,
kernel fusion can increase register and LDS pressure and may
limit parallelism. Thus, for larger applications it may not scale
and the application still requires implicit synchronization.
Other Coherence Protocols: We focused on applying
CPElide to the existing GPU coherence and consistency.
However, since CPElide targets kernel boundary overheads,
it can also be applied to other GPU coherence protocols. For
example, CPElide is compatible with HMG and Halcone [91],
and monolithic GPU coherence protocols like hLRC [4],
hUVM [76], DeNovo [119], or Spandex [5]. However, we
compared against HMG because it is the state-of-the-art for
multi-chiplet GPUs. CPElide’s benefits will likely be strongly
correlated with the cost of implicit synchronization at kernel
boundaries in each coherence protocol. For example, CPU
style coherence protocols with active sharer tracking have low
cost acquires and releases, but additional overhead via more
states and invalidation traffic.

Other Accelerators/GPUs: Kernels are a GPU-specific way



Feature HMG [116] | Spandex [5], [119] | hLRC [4] | Halcone [91] | SW DSM [57], [143] | HW DSM [82], [138] | CPElide
No coherence protocol changes X X X X X X v
No L2 cache structure changes X X X X v X v
Reduces Kernel Boundary synchronization overhead v v v v v v v
Avoids remote coherence traffic X X X v X X v
Designed for chiplet-based systems v X X X X X v
Access to scheduling information to reduce overhead X X X X X X v

TABLE III: Comparing CPElide to prior work.

of partitioning work. Other accelerators partition work into
different types of phases and granularities. Nevertheless, since
CPElide targets phase (kernel) boundary synchronization, it
can be applied to other accelerators that utilize a similar
interface. Importantly, many accelerators [7], [14], [29], [50],
[58], [111] as well as ARM and NVIDIA GPUs also use em-
bedded microprocessors (like CPs) as an interface. However,
since accelerators access memory differently and often prefer
different levels of integration [5], this may require a flexible
coherence interface [5], [15], [125]. Regardless, CPElide can
work with a wide range of accelerators and GPUs.

VII. RELATED WORK

Table III compares CPElide to prior work across several
important metrics. This prior work significantly advanced the
field, but either do not target implicit synchronization like
CPElide or cannot provide all of the same benefits.

GPU Coherence & Consistency: Halcone [91] and
HMG [116] designed MGPU chiplet-based GPU coherence
protocols. However, as shown in Section V CPElide outper-
forms HMG. Halcone [91] extends timestamp-based mono-
lithic GPU coherence protocols for multi-GPU systems by
adding hierarchical timestamps. However, it is unclear how
Halcone works in a single GPU with multi-chiplets and it
assumes low bandwidth links between GPUs, which is less
important in a single GPU with multi-chiplets. Thus, CPElide
provides benefits over the state-of-the-art and is the first to
target kernel boundary synchronization overheads in chiplet-
based GPUs and redesign the CP to track access information.
Furthermore, CPElide is compatible with many monolithic
GPU coherence protocols (Section VI).

Multi-core CPU Coherence: Prior multi-core CPU work like
BulkSC [24] and DeNovo [27] use dynamic sets of instructions
or software information to reduce explicit synchronization
overhead. Although this bears some similarity to CPElide’s
eliding of implicit kernel boundary synchronization, neither
BulkSC nor DeNovo target implicit synchronization.
Shadow Tags: Shadow tags could reduce the overhead of in-
validating valid data [127], but have sizable storage overhead,
accessing the shadow tag structure affects the critical path, and
flushing per-chiplet dirty data at kernel boundaries would still
be expensive.

Reducing Chiplet-based GPU NUMA Penalty: CARVE
improves NUMA GPU performance by extending the GPU
cache capacity [142], while LADM uses static analysis to
improve intra-kernel locality via better scheduling [64]. Both
CARVE and LADM corroborate that implicit synchronization
at kernel boundaries ruins the inter-kernel locality, hurting
performance. Other work optimized WG scheduling and/or

placement algorithms [16], [70]. Intelligent schedulers like
these could be used in conjunction with CPElide, which has
detailed information about where data is being accessed and
tight coupling with the WG scheduler. However, intelligent
schedulers do not target implicit synchronization. AMD pro-
posed an architecture where the LLC (the L3) and HBM are
logically shared across the chiplets, but physically sub-divided
across them — each chiplet has a portion of the L3 and the
HBM [117]. CPElide is more attractive with this architec-
ture: unlike HMG, CPElide will not incur remote latencies
for non-local data. TD-NUCA tracks and optimizes block
placement across shared LLC banks to mitigate non-uniform
latency effects [22]. However, it does not preserve inter-kernel
reuse within private caches like CPElide. To preserve reuse
in a chiplet-based GPU, run-time scheduling information is
required, which CPElide leverages via the CP.

Coarse-grained Tracking in Distributed Shared Memory:
Software and Hybrid DSM’s: CPElide also shares some simi-
larities with software and hybrid Distributed Shared Memory
(DSM), which also perform coarse-grained memory tracking
— often via software coherence at a page granularity [44],
[571, [73], [143]. However, these software (or hybrid) level
approaches require additional support (e.g., duplicate page
copies). They also require runtime scheduling information
to accurately track data structure states (Section III-B) —
which is unavailable at the GPU compiler/software level.
This information could be passed at runtime to the host
software by extending ROCm. However, there would be a
significant latency penalty to wait for the host software, hurting
performance [28], [79], [140]. Conversely, CPElide leverages
low level access and scheduling information available in the
CP to synchronize only when necessary, at different granulari-
ties, without additional copies, and without host-side software
latency overheads. Although CPElide could be enhanced by
static compiler analysis [44], [64], it is not always possible.

Hardware DSM’s: Hardware-based DSMs monitor the coher-
ence status of large, aligned memory regions in hardware
to snoop external requests and provide region snoop re-
sponses [82]. However, this requires a warm-up phase and can
lead to false sharing if the regions are not appropriately sized.
This is unnecessary in CPElide, which leverages scheduling,
access mode, and data range information to make coherence
decisions before a kernel starts. Other proposals such as
DirSW shift some of the coherence burden to software to
identify independent regions [138]. However, this is difficult in
GPUs since many kernels use complex data indexing mecha-
nism leveraging multi-dimensional thread grid structures. Most
GPU’s also lack OS support, which DirSW relies on.



VIII. CONCLUSION

Emerging chiplet-based heterogeneous systems presents
challenges: the additional hierarchy they introduced makes im-
plicit synchronization even more expensive and hampers inter-
kernel reuse. To overcome this we propose CPElide, which
redesigns GPU CPs to track which chiplets access specific
data and intelligently elides implicit acquires and releases —
only performing them when and where required. Overall, on
average CPElide improves performance (13%, 19%), energy
(14%, 11%), and network traffic (14%, 17%) over current
approaches, respectively, without requiring hardware changes.
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